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a b s t r a c t

The well-known two-dimensional problem of sound scattering by a Rankine vortex at

small Mach number M is considered. Despite its long history, the solutions obtained by

many authors still are not free from serious objections. The common approach to the

problem consists in the transformation of governing equations to the d’Alembert

problem formulation of sound scattering by cylindrical vortex, Acoustical Physics 54(5)

(2008) 603–614] that due to the slow decay of the mean velocity field at infinity the

convective equation with nonuniform coefficients instead of the d’Alembert equation

should be considered, and the incident wave should be excited by a point source placed

at a large but finite distance from the vortex instead of specifying an incident plane

wave (which is not a solution of the governing equations).

Here we use the new formulation of Belyaev and Kopiev to obtain the correct

solution for the problem of non-resonant sound scattering, to second order in Mach

number M. The partial harmonic expansion approach and the method of matched

asymptotic expansions are employed. The scattered field in the region far outside the

vortex is determined as the solution of the convective wave equation, and van Dyke’s

matching principle is used to match the fields inside and outside the vortical region.

Finally, resonant scattering is also considered; an O(M2) result is found that unifies

earlier solutions in the literature. These problems are considered for the first time.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of sound scattering by a two-dimensional circular vortex has attracted considerable attention [1–14], since
it is a basic problem in the theory of sound interaction with low Mach number flows. The case in point is the scattering of a
plane sound wave by a cylindrical Rankine vortex. The literature contains several different results for this problem each
claiming to be correct; meanwhile, an analysis of what is wrong with the others is not usually provided.

The question of a consistent formulation for the problem of sound scattering by the vortex is considered in detail in [1],
where it is shown that higher-order terms in M must be retained in the wave operator in order to provide an unambiguous
description of the incident field. Thus within the framework of the plane wave scattering formulation (which reflects the
use of the d’Alembert wave operator), it is difficult to capture the physical essence of the problem.

Three main approaches can be distinguished. The first is based on the solution of Lighthill’s equation [2–4,6,8,11,13];
the second makes use of Howe’s equation [5,14], for the stagnation enthalpy; and the third approach is based on a partial
ll rights reserved.
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harmonic expansion of the incident sound field [7,9,10,12]. In these papers a plane wave is used as the incident field, which
leads to implicit or explicit difficulties. This is due to the fact that the plane wave is not a solution of the governing
equations at any distance from the vortex, even if the Mach number is small, because the mean velocity field decays at
infinity too slowly; this question is considered in detail in [1]. Transformation of the governing equations into the form
where the left-hand side is d’Alembert’s operator and all the difficulties are translated to the right-hand side (the source),
which is the first approach and the one used in most papers, is not suitable for sound scattering by a vortex, owing to the
slow decay of the source at infinity. The solution involves integrals that do not exist in the general sense, and thus depend
upon the method of integration. For example, the solutions obtained by using a polar coordinate system for integral
evaluation [2–4,6,8] and a Cartesian coordinate system [11,13] are different.

It may seem that the problem could be solved by using Howe’s equation. Indeed, if one confines attention to the
component of the scattered field emitted by the oscillation of the vortex under plane-wave forcing (see [5]), one will obtain
well-defined integrals and thus a mathematically good solution; however, in this case the part of the scattered field due to
the transformation of the incident wave by the slowly decaying mean velocity field of the vortex is neglected. An attempt
to account for this part by reducing the Blokhintsev–Howe operator to d’Alembert’s operator and translating the refracting
term from the left of the equation to the right [14] nullifies the advantage of Howe’s equation, because the translated term
(the source) possesses the same drawbacks as in the first approach (see discussion in [1] of Sakov’s approach [11]), so that
the solution is determined by integrals that do not exist in the general sense and thus depend upon the method of
integration. Difficulties of the same nature arise when the third approach is employed and a plane wave is used as the
incident field. Note that the ill-posedness of the incident plane wave problem is not universally accepted.

Therefore, in [1] it is proposed to consider as the incident field the field of a point harmonic source placed at large but
finite distance R from the vortex in the mean flow around the vortex (Fig. 1). A solution of the governing equations in the
leading and the second approximation in M for the point source is to be chosen as an incident field. In the new formulation,
the correct asymptotic solution to the problem of non-resonant sound scattering by a Rankine vortex in a weakly
compressible fluid is obtained. The specific region I: a=M5r5R is considered where the comparison of this result with
existing solutions is provided. It turns out that the majority of papers [2–6,10–14] correctly describe the sound–vortex
interaction field (excluding a narrow parabolic region behind the vortex) by representing it as the sum of a plane wave and
a correction term, proportional to

f ðyÞ �M2 siny�cot
y
2

� �
(1)

The term cotðy=2Þ, which is singular in the direction y=0 behind the vortex, describes the distortion of the incident field
in the slowly decaying mean velocity field outside the vortex core. The proper solution is non-singular, and the solution (1)
breaks down in a narrow parabolic region behind the vortex. The correct wavefront deformation is obtained in [11,13–14].
However, all these comparisons can be made only in region I, whereas outside it all of the existing solutions are invalid.

It should be noted that a point source model is also used in [4]. However, that paper focuses mostly on the case of a
point source near the vortex. The case of the point source far from the vortex is, by analogy with usual diffraction problems,
substituted in [4] by the problem of plane wave scattering, i.e. the case of the point source at large but finite distance from
the vortex has not, in fact, been investigated.

The present paper also addresses the important question of resonant scattering by the vortex. In Refs. [9,10] it is
demonstrated that when the incident sound frequency coincides with a resonance frequency (i.e. the real part of an
Fig. 1. The Rankine vortex—a two-dimensional vortex of constant vorticity in the circle of radius r=a. Point harmonic source placed at large but finite

distance R from the vortex.
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eigenfrequency) of the vortex, the scattered pressure amplitude becomes O(1), and not O(M2) as in the case of non-
resonant scattering. This result relates to the presence of poles in the scattering amplitude for the eigenfrequencies of the
system, and is a general result of the scattering theory. However, it has been argued in [15], by using matched asymptotic
expansions up to O(M2) terms, that although the scattered amplitude increases at the resonance frequency, it remains
small and does not exceed O(M2). It turns out that both statements [10,15] are correct. The resonant scattering amplitude
may indeed be of order unity, as is obtained in [9,10]. However, this takes place not at the incompressible vortex
eigenfrequency, but at the exact compressible vortex frequency, which differs from the incompressible vortex frequency by
terms of O(M2). If the incompressible vortex eigenfrequency is considered, one obtains the result found in [15].

The structure of the paper is as follows. Section 2 defines the problem and sets out the governing equations. The
solution for non-resonant scattering of sound due to a point source at large but finite distance is obtained in Section 3. The
results for resonant sound scattering are discussed in Section 4, where an expression for the scattering amplitude is
provided that unifies the results of previous researchers and resolves the contradiction between them.

2. The governing equations

Let there be a Rankine vortex of radius a in an ideal (inviscid and non-heat-conducting) compressible fluid. In the
cylindrical coordinate system (r,y,z), this means that inside the radius r=a, the z-component of vorticity is a constant O0

and the other components are zero. There is no vorticity outside r=a. The flow is supposed to be homentropic and
independent of z. Expressions for the mean velocity are well known and coincide with those for the incompressible flow
problem. Namely, the radial vorticity component is zero and the azimuthal component V0 is

V0 ¼
O0r

2
; roa and V0 ¼

O0a2

2r
; rZa: (2)

By assuming the fluid is an ideal gas, with constant specific-heat ratio g, explicit expressions can be found for the
unperturbed pressure P0 and density t0. The dependence of P0 and t0 on the coordinate r differs from that of the
incompressible flow problem, so that the squared speed of sound a2

0ðrÞ is as follows:
In the region rZa

a2
0ðrÞ ¼ g

P0ðrÞ

t0ðrÞ
¼ a2

0ðaÞ 1þ
g�1

2
M2 1�

a2

r2

� �� �
(3)

In the region roa

a2
0ðrÞ ¼ g

P0ðrÞ

t0ðrÞ
¼ a2

0ðaÞþ
g�1

2
O2

0ðr
2�a2Þ (4)

Here, a0ðaÞ is the sound speed at the core boundary r¼ a, and M¼O0a=2a0ðaÞ is the Mach number at this radius.
Since it is an acoustic scattering problem we are interested in, it is necessary to find the governing equations for the

propagation of small pressure perturbations of the form expð�io0tÞ through the regions inside and outside the vortex, o0

being the angular frequency of the incident sound wave. The problem will be solved for the pressure perturbation in the
linear approximation. The sound wavelength l is assumed to be long ðlbaÞ and the Mach number is assumed to be small
ðM51Þ. The solution will be sought as an expansion in powers of M.

We decompose the velocity, pressure and density fields as follows: V0þû, P0þ p̂, t0þ r̂, where û, p̂ and r̂ are the
velocity, pressure and density perturbation fields, respectively. Substituting them into the Euler equations and taking (2)–
(4) into account, we get the following system of equations in the linear approximation:

qûr

qt
þ

V0

r

qûr

qy
�

2V0

r
ûy ¼

r̂
t2

0

qP0

qr
�

1

t0

qp̂

qr

qûy

qt
þ

V0

r

qûy

qy
þ

qV0

qr
þ

V0

r

� �
ûr ¼�

1

t0r

qp̂

qy
qr̂
qt
þ

1

r

q
qr
ðt0rûrÞþ

t0

r

qûy

qy
þ

V0

r

qr̂
qy
¼ 0

p̂ ¼ a2
0r̂; a2

0 ¼ gP0=t0

8>>>>>>>>>><
>>>>>>>>>>:

(5)

Here, ûr and ûy are the radial and azimuthal components of the velocity û, and a2
0ðrÞ is given by (3) or (4). The solution for the

linearized Euler equations will be sought as a sum of azimuthal harmonics: thus p̂ ¼ e�io0t
Pþ1

n ¼ �1 p̂nðrÞe
iny for the pressure

perturbation, and similarly for the density and the components of velocity. Eventually the real part of the solution is required; but
because the whole analysis is linear, taking the real part can be deferred until it is necessary to discuss energy fluxes.

It is convenient to introduce dimensionless variables x, o, a2ðxÞ such that r¼ ax, o0 ¼oO0=2, a2
0ðrÞ ¼ a2

0ðaÞa2ðxÞ; the
azimuthal harmonic amplitudes of pressure, velocity and density are written as p̂n ¼ pnP0ðaÞ, û ¼ ðO0a=2Þu, r̂n ¼ rnt0ðaÞ,
respectively. The solution of the linearized problem for each azimuthal harmonic n will be found as follows. We distinguish
two main regions: (i) inside the vortex, x� 1 and (ii) outside the vortex, xZ1; the latter is partitioned into a near-field
subregion, x� 1 and a far-field subregion xb1, which overlap in an intermediate subregion. The condition for the incident
field (e.g. a plane wave or a point source) is posed in the far-field subregion. The solution in the far-field subregion (a sum
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of the incident field and the scattering field) is to be matched with the solution in the near-field subregion. The near-field
subregion solution (the pressure and normal velocity) must coincide at the boundary of the vortex with the solution inside
the vortex, which is finite at the point of origin. These conditions taken together give the complete solution of the problem
for each nth harmonic. For the non-resonant case only a two-term expansion in M is required: namely, the terms of Oð1Þ
and OðM2Þ. The solution is a sum of these terms over all harmonics. The resonant case requires more terms in the expansion
but for only one azimuthal harmonic, which is resonant.

2.1. Region inside the vortex core

In the core region rra, the mean velocity and the sound speed are described by (2) and (4), respectively. Taking this
into account, from system (5) we obtain for the azimuthal harmonic amplitudes

d2p̂n

dr2
þ

1

r
1�

O2
0r2

4a2
0

 !
dp̂n

dr
þ

O2
0r2

4a4
0

da2
0

dr
�

3O2
0

2a2
0

þ
nO3

0

4sa2
0

þ
s2

a2
0

�
n2

r2

 !
p̂n ¼ 0

û
ðnÞ
r ¼

s
s2�O2

0

 !
i

t0

dp̂n

dr
þ

ip̂n

t0

nO0

rs �
O2

0r

4a2
0

 !" #

û
ðnÞ
y ¼

n

sr

p̂n

t0
�

iO0

s
û
ðnÞ
r

8>>>>>>>>>><
>>>>>>>>>>:

(6)

where s¼ ðnO0=2Þ�o0, and a2
0 ¼ a2

0ðrÞ is given by (4). This system is well known and can be found, for instance, in [16]. It is
supposed here that sa0 and s2aO2

0.
The exact equation for the dimensionless amplitude of the nth harmonic pn is as follows:

d2pn

dx2
þ

1

x
1�

M2x2

a2ðxÞ

� �
dpn

dx
þ

M2C
a2ðxÞ

þðg�1Þ
M4x2

a2ðxÞ
�

n2

x2

� �
pn ¼ 0; (7)

where

C¼ ðn�oÞ2�6þ
2n

n�o � const;

and

a2ðxÞ ¼ 1þ
g�1

2
M2ðx2�1Þ:

After neglecting the OðM2Þ terms, one gets

d2pn

dx2
þ

1

x
ð1�M2x2Þ

dpn

dx
þ M2C�

n2

x2

� �
pn ¼ 0 (8)

Once the solution for Eq. (18) is found, the nth harmonic velocity components uðnÞr and uðnÞy are obtained
straightforwardly from (6). As noted above, in the case of non-resonant scattering we have to retain terms up to OðM2Þ;
these are determined by Eq. (8). The resonant case requires retaining more terms from the exact equation (7).

2.2. Region outside the vortex core

In the outer region rZa, sound propagates in an irrotational flow. Therefore we can introduce the velocity potential
ĵ : ûr ¼ @ĵ=@r; ûy ¼ ð1=rÞ@ĵ=@y. The potential is also sought as a sum of azimuthal modes: ĵ ¼ e�io0t

Pþ1
n ¼ �1 ĵnðrÞ e

iny.
Substituting these formulae into (5), we obtain for the harmonic amplitudes

d2ĵn

dr2
þ

1

r
1þ

V2
0

a2
0

 !
dĵn

dr
þ

s2

a2
0

�
n2

r2

 !
ĵn ¼ 0

r̂n ¼ is t0

a2
0

ĵn; p̂n ¼ it0sĵn; sðrÞ �o0�
O0a2

2r2
n

8>>>>><
>>>>>:

(9)

Let the potential ĵn be scaled by V0ðaÞa�O0a2=2�Maa0ðaÞ. Thus, the exact equation for the dimensionless nth
harmonic amplitude jn is as follows:

d2jn

dx2
þ

1

x
1þ

M2

x2a2ðxÞ

� �
djn

dx
þ

M2s2ðxÞ

a2ðxÞ
�

n2

x2

� �
jn ¼ 0; (10)

where

sðxÞ ¼o� n

x2
; a2ðxÞ ¼ 1þ

g�1

2
M2 1�

1

x2

� �
:

This equation can be found in [17].
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Outside the vortex we distinguish two asymptotic regions: the near-field region, x� 1 and the far-field region
x41=Mb1. These overlap in the intermediate region. The condition for the incident field (e.g. a plane wave) is posed in
the far-field subregion.

2.2.1. Near-field region x� 1
Here we seek the solution of Eq. (10) in the region near the vortex ðx� 1Þ. Neglecting terms of OðM4Þ and higher in Eq.

(10), one obtains

q2jn

qx2
þ

1

x
1þ

M2

x2

� �
qjn

qx
þ M2o2þM2 n2

x4
�
n2

0

x2

� �
jn ¼ 0; n2

0 ¼ n2þ2nM2 (11)

This equation takes into account all OðM2Þ terms and holds for distances up to x� 1=M.

2.2.2. Far-field subregion, x41=Mb1
Neglecting terms of OðM4Þ and higher in (10) in the far-field region for x41=M we obtain

d2jn

dx2
þ

1

x

djn

dx
þ k2a2�

jnj2

x2

� �
jn ¼ 0; where k2 ¼

M2o2

a2 1þ g�1
2 M2

� � (12)

jnj ¼ jnjþbsgnðnÞ; b¼oM2 for na0; n¼ 0; n¼ 0 (13)

In Eq. (12) the exact expression for k2 is preserved. For matching we introduce the outer variable x¼ kax�Mx. Two
terms of the outer solution expansion can be found from the equation

d2jn

dx2
þ

1

x
djn

dx
þ 1�

jnj2

x2

 !
jn ¼ 0: (14)

Eqs. (8), (11) and (12) or (14) are basic for the problem of sound scattering by the Rankine vortex in the non-resonant
case and for our analysis of different formulations of the problem. They allow one to seek a matched asymptotic solution,
taking the terms of Oð1Þ and OðM2Þ into account in the inner region xr1=M and in the outer region xZ1, which overlap in
the region x� 1=M. Note that the OðM4Þ term �o2M4jn=r2 has been added in Eq. (12) to replace the exact expression
n2

0 ¼ n2þ2nM2 in (11) by n2 ¼ n2þ2noM2þo2M4. This does not affect the accuracy of our analysis and corresponds to
renormalizing the main variable x [20]. Eq. (12) will be used in Section 3 for the far-field solution. For van Dyke’s matching
procedure the same equation, rewritten in outer variables as (14), will be used. Note that Eqs. (12) and (13) appear to be
identical to the equation considered by Berry et al. [21]. The simplification above thus allows us to use the approach of [21]
for summing the series, with some modification to deal with the more complex series of the present formulation. The
ambiguity associated with earlier formulations can thereby be resolved.

In order to consider resonant scattering, higher order terms should be retained, although only for the harmonic n which
is excited in the case of resonance. For this n the exact Eq. (7) inside the vortex and the exact Eq. (10) in the near-field
subregion outside the vortex will be considered. The solution obtained by joining these solutions is then asymptotically
matched with the solution of the far field.

3. Non-resonant scattering

3.1. Incident field

Let there be a point source of sound (a mass source) at the point r¼ R; y¼ p. Thus on the right of the third equation in
(5) (the continuity equation) there is, instead of zero, the function qe�io0tdðr�RÞdðy�pÞ=R, where q is the density source
strength, which from now on is set to be O0t0=2. Let the sound source be located in the region far from the vortex
(R=ab1); therefore, the harmonic amplitudes for the potential are described by Eq. (12) or Eq. (14). Since
dðy�pÞ ¼ ð1=2pÞ

Pþ1
n ¼ �1 einðy�pÞ, the equation for the amplitude jn is as follows:

d2jn

dx2
þ

1

x

djn

dx
þ k2a2�

jnj2

x2

� �
jn ¼

ae�ipn

2pR
dðx�R=aÞ: (15)

Its solution is jn ¼ ðae�ipn=2pRÞGnðr;RÞ, where Gnðr;RÞ is the Green’s function of Eq. (14), given by

Gnðx;RÞ ¼
pR

2ia
Hð1Þjnj ðkRÞJjnjðkaxÞ; 1rxrR=a

JjnjðkRÞHð1Þjnj ðkaxÞ; R=arx

8<
:

It is clear that for rZR the solution is an outgoing wave, i.e. it satisfies the Helmholtz condition, which states that as
r-1 only outgoing waves are present. In the region a5roR, the sound field F generated by the source is

F¼
Xþ1

n ¼ �1

e�ipn

4i
Hð1Þjnj ðkRÞJjnjðkrÞ einy�io0t : (16)
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This solution (16) will be considered as the incident sound field. Generally, to find the sum of series (16) is a formidable
task even if b is supposed small. However, it turns out that it is possible to determine the sum of series (16) in the region
a=Mor5R (shown blue in Fig. 3; for brevity, this part of the far-field region will be called region I). The method is a
modification of that described in [21], which was suggested in [1]. First of all, note that the remainder of the series for
|n|4kr can actually be neglected, because kr is large in region I and the Bessel functions JjnjðkrÞ for these n are exponentially
small compared with their values for |n|okr. The series (16) is dominated by a finite number of terms, namely those for
which |n|okr. For this range of n, since kR is large, we can moreover substitute the Hankel functions by their large-
argument asymptotic form,

Hð1Þn ðkRÞ �

ffiffiffiffiffiffiffiffiffi
2

pkR

r
eiðkR�ðpn=2Þ�ðp=4ÞÞ:

Note that the terms in (16) for which |n|4kr remain exponentially small after the substitution; so approximating the
Hankel functions by their far-field asymptotic form involves an exponentially small error. The sound field generated by the
source is therefore estimated as

F¼
Xþ1

n ¼ �1

e�ipn

4i
JjnjðkrÞ

ffiffiffiffiffiffiffiffiffi
2

pkR

r
eiðkR�ðpjnj=2Þ�ðp=4ÞÞ einy�io0t (17)

We use the integral representation of the Bessel function (Schläffli integral, see [22])

JnðkrÞ ¼
1

2p

Z
C

exp iðnx�kr sinxÞ
	 


dx (18)

where the integration is taken over the contour C (see the green contour in Fig. 2), which lies above the real axis. Thus,
Imx40 everywhere on the contour.

Substituting the Bessel functions in series (17) by the integral representation (18), we obtain

i¼
e�io0t

8pi

ffiffiffiffiffiffiffiffiffi
2

pkR

r
eiðkR�ðp=4ÞÞ

Z
C

e�ikRsin x
� X1

n ¼ �1

eijnjxþ inðy�pÞ�iðpjnjÞ=2
�

dx

The series in the integrand converges uniformly, because Im x40 for the entire contour; thus, the change in the order of
the summation and integration is valid. After evaluating the series for even and odd n separately, we obtain

F¼
K

2p

Z
C

e�ikr sin xf ðx;yÞdx (19)

Here, the following notations are introduced:

f ðx; yÞ ¼ 1þeijbjðx�ðp=2ÞÞ eiðyþxþðp=2ÞÞ

1�eiðyþxþðp=2ÞÞ
þe�ijbjðx�ðp=2ÞÞ eiðx�yþðp=2ÞÞ

1�eiðx�yþðp=2ÞÞ
;

K ¼
e�io0t

4i

ffiffiffiffiffiffiffiffiffi
2

pkR

r
eiðkR�ðp=4ÞÞ (20)

Since kr is large in region I, the saddle-point method can be used to calculate integral (19), according to which the
integral is dominated by its saddle points and the poles that are crossed by the contour during its deformation from the
Fig. 2. Initial contour (green), SDP contour (black) and the poles of the integrand.
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initial one to the steepest descent path (SDP). The saddle points are xs ¼7p=2; the parts of the steepest descent path
passing through the saddle points are depicted in Fig. 2 by a solid bold black line. Using these parts of the SDP, we can
construct the new contour C0, so that the integration over the new contour does not change the value of (19). It consists of
the SDP part passing through the saddle point xs ¼�p=2 from above and the SDP part passing through the saddle point
xs ¼ p=2 from below (this direction corresponds to the direction of the increase of Rex). For the new contour to be
continuous, both parts of the SDP are to be joined, as depicted in Fig. 2 by the dashed line, in the region where the value of
the integral is exponentially small. The resulting contour C0 consists of the two parts of the SDP and the dashed line (see
Fig. 2). The integral over the dashed line and the parts of the SDP below the dashed line can be made arbitrary small if the
connection is made far enough from the real axis. Since during the deformation from the initial contour C to the final
contour C0 it crosses the poles of integrand f ðx; yÞ, integral (19) can be expressed as follows:

F¼ ISDP�2pi
X

resðxnÞ (21)

Here ISDP stands for integral (19), wherein the integration is taken over the contour C0, which is dominated by the
contribution of its two saddle points x¼ 7p=2; resðxnÞ are the residues of the function f ðx; yÞ in the respective poles, which
are crossed by the contour C during its deformation to the contour C0.

The first region to consider is that where y is not close to 0, p or 2p (when this condition does not hold, the poles in (19)
become close to the saddle points; in this case the saddle-point method has some peculiarities (see [23,24]) and this
situation is discussed below separately). The poles of the function f ðx;yÞ, crossed by the contour C during its deformation to
C0, are

x1 ¼ y�
p
2

if 0oyop and x2 ¼
3p
2
�y if poyo2p

Thus, for all y

�2pi
X

m

resðxmÞ ¼ K eijbjðp�yÞ eikrcos y (22)

The value of the integral ISDP is dominated by the values of its integrand at the two saddle points

ISDP ¼
Kffiffiffiffiffiffiffiffiffiffiffi

2pkr
p eiðkr�ðp=4ÞÞf �

p
2
; y

� �
þe�iðkr�ðp=4ÞÞf

p
2
; y

� �� �
By direct calculations we obtain

ISDP ¼
Kffiffiffiffiffiffiffiffiffiffiffi

2pkr
p pjbjcot

y
2

� �
eikr�iðp=4Þ (23)

The singularity in (23) is smoothed when the situation of the poles xn being near the saddle points xs (i.e. when y is close
to 0, p or 2p) is explicitly considered by making use of the appropriate formulae of the saddle-point method. Namely, the
asymptotic expansion of ISDP, valid uniformly as xn-xs is given by (see [22])

ImðkrÞ � e�ikr sinðxsÞ 7 iap e�krb2

erfcð8 ib
ffiffiffiffiffi
kr
p
Þþ

ffiffiffiffiffi
p
kr

r
T

� �
; kr-1 (24)

where the upper signs are used if Im b40 and the lower signs are used if Im bo0, and

a¼ lim
x�xn

½ðx�xnÞfmðxÞ�; b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i sin ðxnÞ�i sinðxsÞ

p
; T ¼ hf ðxsÞþ

a

b
; h¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i

sinðxsÞ

s

Using these formulae for y¼ pþe (e is small) yields ISDP ¼ 0, and for y¼ e (e is small) yields ISDP ��ipjbjKð1þOðeÞÞ. Thus,
from (21) we obtain that in both cases

F¼ eikr cos yð1þOðeÞÞ (25)

so that the singularity in (23) disappears. Therefore, the incident field in the region a=Mor5R is given by (25) when y is
close to 0, p or 2p, and by

I¼ K eijbjðp�yÞeikr cos yþ
Kpjbjffiffiffiffiffiffiffiffiffiffiffi

2pkr
p cot

y
2

� �
eikr�iðp=4Þ (26)

when y is not close to 0, p or 2p. Thus, the incident sound field (16) in region I consists of the quasi-plane wave and the
outgoing cylindrical wave (see Fig. 3). The appearance of the latter is due to the long range convection (or refraction) of
sound by the slowly decaying mean velocity field of the vortex.

Let us note the paper [25], where by making use of the partial harmonic expansion a numerical estimate of the solution
for shallow water boundary displacements by a vertical vortex is provided. Those authors are the first to endeavor to adopt
the solution of [21] developed for Aharonov–Bohm effect to the sound scattering problem. In that work, an initial
dislocated wave is used as the incident field. The incident field condition of this type is discussed in [1].
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Fig. 3. The point source at the large distance R. In region I, the incident field is a sum of a quasi-plane wave, an outgoing cylindrical wave of cot y/2 type

and a smoothing wave in the narrow region behind the vortex.
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3.2. Scattered field

The solution of the problem of sound scattering by the vortex is supposed to be a sum of the incident field (16) (which
in region I has been evaluated to be of the form (26)) and the wave scattered by the vortex

j¼
Xþ1

n ¼ �1

ðanJjnjðxÞþFnHð1Þjnj ðxÞÞ e
iny�io0t (27)

wherean ¼�i e�ipnHð1Þjnj ðkRÞ=4, x¼ kx�Mx, Fn is an amplitude of the corresponding harmonic of the scattered wave. The
problem thus consists in determining the amplitudes Fn for all n assuming that

Fn ¼ fnM2þoðM2Þ (28)

The solution of the problem will be found as follows. The solution in the subregion outside the vortex will be
determined from the condition of coincidence at the boundary of the vortex with the internal solution (the pressure and
normal velocity of one solution are set equal to those of another one), which is finite at the point of origin. Two main
regions are distinguished (Section 2): (i) inside the vortex, xr1 and (ii) outside the vortex, xZ1. The latter is partitioned
into a near-field subregion, x� 1 and a far-field subregion xb1, which overlap in an intermediate subregion x¼ kax� 1,
where k is given by (12). The solution in the far-field subregion (a sum of the incident field and the scattering field) is to be
matched with the solution in the near-field subregion. We use van Dyke’s matching principle (m, l)ex=(l, m)in, i.e. the m-
term inner expansion of the l-term outer expansion equals the l-term outer expansion of the m-term inner expansion [20].
These conditions in the aggregate give the complete solution of the problem for each nth harmonic. For the non-resonant
case only the two-term expansion in M is required: namely Oð1Þ and OðM2Þ terms are retained. The solution is a sum of the
OðM2Þ terms for all harmonics. The resonant case requires more terms in the expansion but for only one harmonic, which is
resonant.

Note, that for the matching procedure it is very important that we know the two-term solution for each nth harmonic in
the far-field subregion (the solution of the form (27) of Eq. (12)) since it enables us to obtain terms of the form (m,1)ex and
(m,2)ex in van Dyke’s notations as x-0.

3.2.1. Outer region, near-field subregion

Let us determine the solution of Eq. (11) in the region near the vortex ðx� 1Þ: since Eq. (11) is to be valid for Oð1Þ and
OðM2Þ terms it means we obtain the two-term solution (m,1)in and (m,2)in. Let us determine the two leading terms of the
expansion in the Mach number.

In the following analysis, the subscript n in the notation for nth harmonic is dropped. Using the method of successive
approximations, one finds that the nth harmonic amplitude for the potential j is as follows:

j¼ A1 1�
M2o2x2

4

� �
þA2 ln xþ

M2o2x2

4
ð1�ln xÞ�

M2

4x2

� �
; n¼ 0:

j¼ A1xjn0j 1�M2 A2

A1

o2

2
ln x

� �
þA2x�jn0 j 1þM2 A1

A2
ln x

� �
�A1

M2o2

8
; jnj ¼ 1:

j¼ A1xjn0 j þA2x�jn0 j þ
M2

4
�

A1o2

jn0jþ1
xjn0jþ2þ

A1ðn
2þjn0jÞ

jn0j�1
xjn0j�2þ

A2o2

jn0j�1
x�jn0 jþ2�

A2ðn
2�jn0jÞ

jn0jþ1
x�jn0j�2

� �
; jnjZ2: (29)
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where A1;A2 are independent constants, A1 corresponds to the increasing part of the solution and A2 corresponds to the
decreasing part of the solution. Knowing the amplitude j near the vortex, we can find straightforwardly the amplitudes of
the nth harmonic for the radial velocity ur and the pressure p.

3.2.2. Region inside vortex

In the region inside the vortex, the propagation of sound perturbations is governed by the system of equations (6). To
find the pressure amplitudes in two-term expansion in M one has to solve Eq. (8). The solution finite at the point of origin
can be easily found using the method of successive approximations and is given to two leading terms of the expansion in
the Mach number by

p¼ C1xjnj 1þ
M2

4
x2 jnj�C
jnjþ1

� �
(30)

where C1 is an unknown constant of the inner solution (the second constant is zero because of the condition of finitude at
the point of origin).

3.2.3. Matching of solutions at the vortex boundary

In order to obtain a relation between the constants A1, A2 and C1, the solution for pressure and normal velocity in the
region inside the vortex and the corresponding solution in the near-field subregion of the outer region are to coincide at
the vortex boundary x=1. Note, that van Dyke’s matching principle is not used here, it is necessary to match the solutions
only in the overlapping region in the far field. Determining an expression for the radial velocity from (29) and (30) with the
help of (6) and joining the obtained solutions for the pressure and the radial velocity at the vortex boundary, for each case
jnjZ2, |n|=1 and n=0 one gets a system of two equations for three unknown constants A1, A2 and C1. Eliminating C1 in each
system, one determines equations, relating A1 and A2 to each other:

A2 ¼
3

4
M4o2A1½1þOðM2Þ�; n¼ 0

A1 ¼osgnðnÞA2; jnj ¼ 1

A1 ¼ A2½1�ðn�oÞsgnðnÞþOðM2Þ�; jnjZ2

8>>><
>>>:

(31)

Thus, there is only one unknown constant, A1, in the near subregion and only one unknown constant Fn in the far
subregion. It is easy to see that for jnjZ2 the constants A1 and A2 are of the same order, if the frequency is not close to an
eigenfrequency of the vortex (i.e. if the non-resonant scattering is considered). The case of resonance is considered in
Section 4 using the results of Appendix A.

3.2.4. Matching with the far-field solution

Using the method of matched asymptotic expansions and van Dyke’s matching principle, one obtains the following:
For n¼ 0:
In this case the two-term outer subregion solution (27) is j¼ a0J0ðxÞþ f0M2Hð1Þ0 ðxÞ and the two-term inner subregion

solution is determined by (29) and (31). Using the asymptotic forms for the Bessel functions and van Dyke’s matching
principle (1,1)ex=(1,1)in we obtain A1 ¼ a0, A2 ¼ 0. Using (1,2)ex=(2,1)in yields f0 ¼ 0.

For jnj ¼ 1:
Suppose that the constants are OðMÞ: A1 ¼ kaA1, A2 ¼ kaA2. Van Dyke’s matching principle (1,1)in=(1,1)ex then yields

A1 ¼ an=2; A2 is given by (31), so that A2 ¼ ansgnðnÞ=2o. To determine fn we use the equation (2,1)in=(1,2)ex, which is as
follows:

A1kaxþ
A2ka

x
¼ an

kax

2

� �
�

2iM2

pkax
fn

Thus, fn ¼ ipoansgnðnÞ=4, where an is defined after (27). For n¼ 71 the amplitudes are Fn ¼�poM2sgnðnÞHð1Þjnj ðkRÞ=16
and the scattered wave in the leading approximation is given by

j¼ ðf1 eiyþ f�1 e�iyÞM2Hð1Þ1 ðxÞ e
iot ¼�

ip
8
oM2Hð1Þ1 ðkRÞHð1Þ1 ðkrÞ e�io0t siny (32)

For jnjZ2:
Suppose that A2 ¼ ðkaÞjnjA2, A1 ¼ ðkaÞjnjA1 (according to (31) they are of the same order). Evaluating the series of

j¼ anJjnjðxÞþ fnM2Hð1Þnj ðxÞ as x-0 and using (29) we perform the matching according to van Dyke’s matching principle.
From the equation (1,1)ex=(1,1)in we obtain A1 ¼ an=ðjnj�1Þ!2n, A2 ¼ 0. Using (1,n)ex=(n,1)in yields fn ¼ 0. It means that
Fn ¼ oðM2Þ for jnjZ2.

The results of the matching procedure can now be summarized. The aim is to discover the leading-order term in an
expansion of the scattered field in powers of Mach number. We therefore retain in the second term of (27) the harmonics
with n¼ 71 only, which are of order M2, and neglect the other harmonics (since the scattering amplitude coefficients Fn

are negligibly small for n¼ 0; nZ2). This means that the scattering field is determined by expression (32). The incident
field corresponding to the first term in (27) is represented by the complete series. Note that the scattered wave, given by
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(32), is a standard dipole field and does not contain any singularities. It represents the re-emission of sound by the vortex,
when it is forced to oscillate by the incident wave field (as noted in [5,10] for the plane wave formulation).

The complete solution in the far field is the sum of the scattered field (32) and the incident field due to the point
source (16):

j¼
Xþ1

n ¼ �1

e�ipn

4i
Hð1Þjnj ðkRÞJjnjðkrÞ einy�io0t�

ip
8
oM2Hð1Þ1 ðkRÞHð1Þ1 ðkrÞ e�io0t siny (33)

Further insight can be gained by examining this expression in the region a=Mor5R, where the series in the first term
of (33) turns out to be determined explicitly. By using Eq. (26) for the incident field when y is not close to 0, p, or 2p, one
gets

j¼ K eibðp�yÞ eikrcos y�
Kffiffiffiffiffiffiffiffiffiffiffi

2pkr
p pb siny�cot

y
2

� �� �
eikr�iðp=4Þ; K ¼

e�io0t

4i

ffiffiffiffiffiffiffiffiffi
2

pkR

r
eiðkR�ðp=4ÞÞ (34)

where the amplitude K relates to the location of the point source and the point of observation. Naturally, in a narrow
parabolic region behind the vortex the field has a more complicated structure, expressed through the Fresnel integrals (24),
which smooth the singularity corresponding to ctgðy=2Þ. This result helps to understand where the previous solutions
break down. It turns out that the majority of papers using polar coordinates correctly describe the sound–vortex
interaction field by representing the field as a plane wave and the two terms of (1). However, the solution is close to the
form of (1) in region I only. The singularity corresponding to cotðy=2Þ is an attribute of the incident field, or more precisely,
the incident field transformation in the slowly decaying mean velocity field of the vortex. The wave front deformation in
the far field, and in a narrow parabolic region behind the vortex, appears to be correctly obtained by using Cartesian
coordinates. However, all comparisons can be made only in region I, whereas outside it this conclusion is invalid. When
one approaches the vortex, or conversely moves away from region I, the complete expression (33) should be used.

Thus, there are three analytical solutions to the governing equations in the far field, which do not use doubtful
mathematical procedures: (i) the solution obtained by Berry et al. [21], (ii) the solution with a point source, and (iii) the
solution with a plane wave at a finite distance around the vortex [1]. They coincide in the leading order in M but differ in
the order of M2. The first solution is obtained for the whole far-field region and is a sum of a quasi-plane wave incident
from the left and an outgoing cylindrical wave. The second solution is obtained in an explicit form in region I (Fig. 3) and
looks like the solution of Berry et al. In the far field beyond the region I this solution is expressed in terms of an infinite
series. The third solution is also obtained in an explicit form only in Region I and is a sum of quasi-plane wave incident
from the left and outgoing and incident cylindrical waves of the order of M2.

The question arises as to what can be expected to obtain in an experiment (physical or numerical). The answer to this
question appreciably depends upon the formulation of the experiment and in particular upon the width of the region,
where the wave is defined. If the experimental region is narrow and the left boundary, on which the condition of incident
plane wave is stated, goes entirely in the Region I, then the scattered fields will be close to predicted in (i) and (ii). If this
experimental region is wide then the solution with an incident plane wave and the solution with a point source placed
farther to the left will be different, because the solution with a point source may differ from the (quasi-)plane wave stated
on the left boundary of the experimental region.

We do not discuss the condition of replacement of the small �1/r vortex-induced field with no flow boundary
conditions on the boundaries of the experimental region because it renders the formulation of the experiment significantly
more difficult. However, if the plane wave boundary condition is stated where it is known to be correct, i.e. in the fluid at
rest, it leads to the third formulation of the experiment, where the vortex is encircled with a weak vortex sheet with the
same total circulation but of the opposite sign. This results in whole region outside of the vortex sheet absence of flow. The
formulation with a plane wave posed in this region seems to lead to solution (iii).

It should be borne in mind that all these differences in the scattered field are of order of M2. The singularity in the
forward scattered direction appears in all three cases, so that if the accuracy of the experiment allows only the existence of
a dislocated wave to be determined, the results of the first and second experiments seem to be indistinguishable. In the
third experiment there may appear the new singularity which may be experimentally determined. This analysis does not
settle the question but rather pave the way for the further discussion and research.

4. Resonant scattering

The Rankine vortex is known to be an oscillatory system that can emit sound in a compressible fluid (see [5,9,17]).
Sound scattering may cause resonant excitation of oscillations, and the scattered field (re-emission by excited degrees of
freedom) may increase by many times. In this case, eigenfrequencies of the system become poles of the scattering
amplitude. The eigenfrequencies of the emitting vortex have imaginary parts that correspond to instabilities—see
[16,9,10]. Since there is no flow along the vortex axis, such an instability cannot be convective [18]. At the same time, the
instability is so weak that the nonstationary problem formulation with the model of two-dimensional Rankine vortex is
quite possible because during the time reciprocal to the instability increment the effects of viscosity may change entirely
the general character of fluctuations.
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Besides, the spectral problem formulation (with a real-valued frequency of excitation) is quite possible as an exact
mathematical formulation. As shown in [10], the solution is finite even in the resonant case. This constitutes the obvious
difference between an exact mathematical formulation and a numerical experiment where initial disturbances for the unstable
harmonics are always present so that one does not succeed in obtaining the spectral solution for the real-valued frequency
because the solution oscillates with unrestrictedly large amplitudes due to the instability [19]. Despite very special role of spectral
problem for unstable system, this solution can be used to describe the first stage of the evolution of the undisturbed vortex under
periodical excitation (initial-value problem). The spectral solution and eigensolution with the complex-valued frequency (taken in
the combination with zero amplitude of vortex boundary in the initial moment) can be used to describe the evolution of the
undisturbed vortex until the unstable eigensolution destroys the flow as a whole [10].

Since the eigenfrequencies of the emitting vortex have imaginary parts that correspond to instabilities—see
[16,9,10]—the denominator of the scattering amplitude is not zero at the real-valued incident frequency, and the
amplitude is given by

Fn �
idn

o�on�idn
(35)

Here o is the dimensionless incident frequency, and on and dn are the real and imaginary parts of the eigenfrequency.
Expression (35) is obtained in Kopiev and Leontiev [10], where dn �M2n is an amplification coefficient for each unstable
harmonic, calculated for the first time for n¼ 2 in [16]. This structure of the solution demonstrates that the steady-state
amplitude is finite; the situation is analogous to scattering by quasi-discrete levels of energy in quantum mechanics [26].
Furthermore, resonant scattering is possible only for nZ2 (eigenoscillations of the vortex exist for these n). Non-resonant
scattering for these harmonics is small—it is OðM4Þ—and can be neglected. As follows from Eq. (35), when the incident-wave
frequency coincides with on, the scattering amplitude is of order unity, which is larger than its non-resonant contribution (32).

In [15] this conclusion was analyzed in detail to OðM2Þ; it was shown that when the incident frequency o coincides with
the eigenfrequency of the incompressible Rankine vortex, on ¼ n�1, the scattering amplitude is smaller than unity, and in
the case of n¼ 2 it increases only to the value �M2. Clearly, there is a contradiction with the previous paragraph. The
objective of the discussion that follows is to resolve this contradiction.

We proceed by expanding all variables to OðM4Þ. This approximation is sufficient only for the harmonic n¼ 2 (for
harmonics nZ3 more terms are necessary); therefore, it is n¼ 2 that is considered below. For this n the exact equation (7)
inside the vortex, and the exact equation (10) in the intermediate region outside the vortex (xr1=M) will be considered;
the solution of the latter equation must be asymptotically matched with the solution of (12) (xZ1=M). It appears that for
the matching we could restrict ourselves to the leading approximation in (12).

Since the exact eigenfrequency of the compressible vortex oi ¼onþ idn must be used in (35), let us find it for n=2 (for
higher n we would need to determine the higher order terms). The outgoing-wave solution to Eq. (12) should be chosen (as
in [16]); this corresponds to setting an=0 in Eq. (27). Consider the far-field subregion of the region outside the vortex. We
restrict ourselves to the leading approximation in Eq. (21) with the solution of the form jrad �Hð1Þjnj ðxÞ, because the leading-
order solution (m,1)ex appears to be sufficient for matching. Expanding Hð1Þjnj ðxiÞ; xi ¼ kiax, k2

i ¼M2o2
i =a

2 in a series for small
x up to accuracy of OðM4Þ we obtain (3,1)ex. In order to obtain (1,3)in we use Eq. (A.1) from Appendix A. Then van Dyke’s
matching principle (3,1)ex=(1,3)in yields a relation between the amplitudes A1 and A2 in Eq. (A.1)

A1

A2
¼

io4M4

16

p�i

2
þ iCg�i ln

2

oM

� �� �
(36)

where Cg ¼ 0:5772 . . . is the Euler constant.
Let us determine the same relation between A1 and A2, using the matching of the outer solution of Eqs. (7) and (10),

calculated to OðM4Þ. We take Eq. (A.1) in the outer region and Eq. (A.2) in the inner region. Matching the pressures and
normal velocities at the vortex boundary yields (A.3) as follows:

A1

A2
¼ ðoi�1Þþ

M2

12
ðo3

i þ8o2
i �28oiþ20Þþ

M4

1152
ð2o5

i þo
4
i ð6gþ45Þ�o3

i ð280þ288gÞþo2
i ð588g�860Þþoið408gþ2864Þ�1740�708gÞ

(37)

After setting (37) equal to (36), one obtains the eigenfrequency for n=2,

o2 ¼ 1�
M2

12
�M4 67

1152
þ

Cg
16
�

ip
32
þ

g
192
þ

1

16
ln

M

2

� �
(38)

This expression coincides with that of [16]; it should be noted, however, that there seems to be a misprint in [16]: the
coefficient in the first term in the brackets must be 67/1152, not 67/1162.

Let us consider scattering by the vortex when the incident-wave frequency is close to (38):

o¼ 1�
M2

12
�wM4; (39)

where w¼ Oð1Þ is an arbitrary constant, i.e. the frequency of the incident wave differs from the real part of the
eigenfrequency for n=2 by an amount of OðM4Þ. The relation between the coefficients A1 and A2 in (37) remains valid. Let us
determine the same relation between A1 and A2, by matching the solutions in the far field. As above we restrict ourselves to
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the leading approximation in Eq. (12) because the leading-order solution (m,1)ex appears to be sufficient for the matching.
However, in this case we should take the incident field into account. Expanding j2 ¼ a2JjnjðxÞþF2Hð1Þjnj ðxÞ; n¼ 72 in a series
for small x up to OðM4Þ we obtain (3,1)ex. In order to obtain (1,3)in we use Eq. (A.1) from the Appendix A. Then van Dyke’s
matching principle (1,3)in=(3,1)ex yields a relation between the amplitudes A1 and A2 in Eq. (A.1). Therefore, the relation
between A1 and A2 changes and instead of (36) one gets

A1

A2
¼

M4

32
ipþ1�2Cgþ2 ln

2

M

� �
þ ip a2

F2

� �
(40)

After setting (40) equal to (37) for the scattering amplitude F2 we finally obtain

F2 ¼ a2

ip
32 M4

M4 67
1152 þ

Cg
16 þ

g
192 þ

1
16 ln M

2

 �� �
�M4w� ip

32 M4
: (41)

We can see that the resonant scattering amplitude in F2 is indeed of O(1) rather than OðM2Þ, and has the precise
structure described in (35) (as was predicted in [10]). However, the resonance evidently occurs at a finite value of w in
expression (39), i.e. at a frequency different from the resonant one by terms of OðM4Þ. If the incident frequency coincides
with an eigenfrequency of the incompressible vortex (coincidence with (38) in the leading-order terms), the largest term in
the denominator of (35) is o�o2 �M2, and the numerator d2 �M4 is not canceled. Therefore, the true resonance is not
achieved at the incompressible eigenfrequency, and the corresponding scattered amplitude is evidently OðM2Þ, as predicted
in [15]. Note that resonant scattering corresponds to a rotating field � expð�iotþ inyÞ but a standing wave along r. This
accords with the condition of no energy flux to infinity because we consider steady-state oscillations with real frequency.

It should be stressed that van Dyke’s matching procedure, used in the resonant scattering problem, requires only the terms (1,
n+1)ex for matching. Consequently, in Eq. (12) we can set n=n without affecting the results of resonant scattering. Thus, unlike the
case of non-resonant scattering, any incident sound field that coincides in the leading-term approximation with that of a point
source at large but finite distance (e.g. a plane sound wave) allows the resonant scattering amplitude to be correctly determined.

5. Conclusion

The well-known problem of long-wavelength sound scattering by a Rankine vortex has been reviewed with the aid of
small-M asymptotic methods. The problem is basic for investigating sound–vortex interactions, but there has been some
confusion so far. Causes of this confusion were examined in [1]. It is shown here that instead of the d’Alembert equation
with right-hand part (sources), the convective equation with nonuniform coefficients should be considered; and instead of
the plane incident wave condition (a plane wave is not the solution of the governing equations at any distance), the
condition of a point source far from the vortex should be posed.

To aid in classifying the existing solutions for non-resonant scattering, a point source placed at large but finite distance
from the vortex has been considered in this paper. This allows one to pose a correct mathematical formulation of the
problem and to compare different approaches and results (see Section 3). The scattered field in the region far outside the
vortex is determined as the solution of the convective wave equation, and van Dyke’s matching principle is used to match
with the vortex region solution.

Resonant scattering is considered under the new formulation (with the point source) and an exact solution is obtained,
which unifies previous results and resolves the existing contradiction between them. It is found that the leading
approximation to the incident field (i.e. a plane wave) is sufficient for matching in the resonant case, but a three-term
O(M4) solution in the inner region is necessary.
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Appendix A

The solution of Eq. (10) in the third approximation (i.e. when terms of OðM4Þ are retained) is straightforwardly
determined by using the method of successive approximation and is as follows:

jin ¼ A1x2þ
A2
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In the same way the solution of Eq. (7) is obtained. It is given by

p¼ C1x2 1þ
M2

12
x2ð2�CÞþ

M4

384
x2ð16ðg�1Þð2�CÞþx2ð16þðC�4Þð6gþCÞÞÞ

� �
(A.2)

From these equations with the help of (6) and (9) the pressure and radial velocity in both regions are determined. The
pressure and radial velocity are to coincide at the vortex boundary; this requirement implies a system of two equations for
three unknown constants A1, A2 and C1. Eliminating C1 in each system, we obtain the relation between A1 and A2:

A1

A2
¼ ðo�1Þþ

M2

12
ðo3þ8o2�28oþ20Þþ

M4

1152
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(A.3)
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